
Module 10

Sourangshu
Bhattacharya

Objectives &
Outline

Memory
Management
in C

malloc & free

Memory
Management
in C++

new & delete

Array

Placement new

Restrictions

Overloading
new & delete

Summary

Module 10: Programming in C++
Dynamic Memory Management

Sourangshu Bhattacharya

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

sourangshu@cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in C++

by Prof. Partha Pratim Das

Software Engineering 2022 Sourangshu Bhattacharya 1

Module 10

Sourangshu
Bhattacharya

Objectives &
Outline

Memory
Management
in C

malloc & free

Memory
Management
in C++

new & delete

Array

Placement new

Restrictions

Overloading
new & delete

Summary

Module Objectives

Understand the dynamic memory management in C++

Software Engineering 2022 Sourangshu Bhattacharya 2

Module 10

Sourangshu
Bhattacharya

Objectives &
Outline

Memory
Management
in C

malloc & free

Memory
Management
in C++

new & delete

Array

Placement new

Restrictions

Overloading
new & delete

Summary

Module Outline

Memory management in C

malloc() & free()

Memory management in C++

new and delete

Array new[] and delete[]

Placement new()
Restrictions

Overloading new and delete

Software Engineering 2022 Sourangshu Bhattacharya 3

Module 10

Sourangshu
Bhattacharya

Objectives &
Outline

Memory
Management
in C

malloc & free

Memory
Management
in C++

new & delete

Array

Placement new

Restrictions

Overloading
new & delete

Summary

Program 10.01/02: malloc() & free():
C & C++

C Program C++ Program

#include <stdio.h>

#include <stdlib.h>

int main() {

int *p = (int *)malloc(sizeof(int));

*p = 5;

printf("%d", *p);

free(p);

return 0;

}

5

#include <iostream>

#include <cstdlib>

using namespace std;

int main() {

int *p = (int *)malloc(sizeof(int));

*p = 5;

cout << *p;

free(p);

return 0;

}

5

Dynamic memory management functions in stdlib.h header for C
(cstdlib header for C++)

malloc() allocates the memory on heap

sizeof(int) needs to be provided

Pointer to allocated memory returned as void * – needs cast to int *

Allocated memory is released by free() from heap

calloc() and realloc() also available in both languages

Software Engineering 2022 Sourangshu Bhattacharya 4

Module 10

Sourangshu
Bhattacharya

Objectives &
Outline

Memory
Management
in C

malloc & free

Memory
Management
in C++

new & delete

Array

Placement new

Restrictions

Overloading
new & delete

Summary

Program 10.02/03: operator new & delete:
Dynamic memory management in C++

C++ introduces operators new and delete to dynamically allocate and
de-allocate memory:

malloc() & free() Operatorsnew & delete

#include <iostream>

#include <cstdlib>

using namespace std;

int main() {

int *p = (int *)malloc(sizeof(int));

*p = 5;

cout << *p;

free(p);

return 0;

}

5

#include <iostream>

using namespace std;

int main() {

int *p = new int(5);

cout << *p;

delete p;

return 0;

}

5

• Function malloc() for allocation on heap • Operator new for allocation on heap
• sizeof(int) needs to be provided • No size specification needed, type suffices
• Allocated memory returned as void * • Allocated memory returned as int *

• Casting to int * needed • No casting needed
• Cannot be initialized • Can be initialized
• Function free() for de-allocation from heap • Operator delete for de-allocation from heap
• Library feature – header cstdlib needed • Core language feature – no header needed

Software Engineering 2022 Sourangshu Bhattacharya 5

Module 10

Sourangshu
Bhattacharya

Objectives &
Outline

Memory
Management
in C

malloc & free

Memory
Management
in C++

new & delete

Array

Placement new

Restrictions

Overloading
new & delete

Summary

Program 10.02/04: Functions:
operator new() & operator delete()

C++ also allows operator new and operator delete functions to
dynamically allocate and de-allocate memory:

malloc() & free() new & delete

#include <iostream>

#include <cstdlib>

using namespace std;

int main() {

int *p = (int *)malloc(sizeof(int));

*p = 5;

cout << *p;

free(p);

return 0;

}

5

#include <iostream>

#include <cstdlib>

using namespace std;

int main(){

int *p = (int *)operator new(sizeof(int));

*p = 5;

cout << *p;

operator delete(p);

return 0;

}

5

• Function malloc() for allocation on heap • Function operator new() for allocation on
heap

• Function free() for de-allocation from heap • Function operator delete() for de-allocation
from heap

There is a major difference between operator new and function operator new(). We explore this
angle more after we learn about classes

Software Engineering 2022 Sourangshu Bhattacharya 6

Module 10

Sourangshu
Bhattacharya

Objectives &
Outline

Memory
Management
in C

malloc & free

Memory
Management
in C++

new & delete

Array

Placement new

Restrictions

Overloading
new & delete

Summary

Program 10.05/06: Operators new[] & delete[]:
Dynamically managed Arrays in C++

malloc() & free() new[] & delete[]

#include <iostream>

#include <cstdlib>

using namespace std;

int main() {

int *a = (int *)malloc(sizeof(int)* 3);

a[0] = 10; a[1] = 20; a[2] = 30;

for (int i = 0; i < 3; ++i)

cout << "a[" << i << "] = "

<< a[i] << " ";

cout << endl;

free(a);

return 0;

}

a[0] = 10 a[1] = 20 a[2] = 30

#include <iostream>

using namespace std;

int main() {

int *a = new int[3];

a[0] = 10; a[1] = 20; a[2] = 30;

for (int i = 0; i < 3; ++i)

cout << "a[" << i << "] = "

<< a[i] << " ";

cout << endl;

delete [] a;

return 0;

}

a[0] = 10 a[1] = 20 a[2] = 30

• Allocation by malloc() on heap • Allocation by operator new[] (different from
operator new) on heap

• # of elements implicit in size passed to malloc() • # of elements explicitly passed to operator

new[]

• Release by free() from heap • Release by operator delete[] (different
from operator delete) from heap

Software Engineering 2022 Sourangshu Bhattacharya 7

Module 10

Sourangshu
Bhattacharya

Objectives &
Outline

Memory
Management
in C

malloc & free

Memory
Management
in C++

new & delete

Array

Placement new

Restrictions

Overloading
new & delete

Summary

Program 10.07: Operator new():
Placement new in C++

#include <iostream> using namespace std;

int main() {

unsigned char buf[sizeof(int)* 2]; // Buffer on stack

// placement new in buffer buf

int *pInt = new (buf) int (3); int *qInt = new (buf+sizeof(int)) int (5);

int *pBuf = (int *)(buf + 0); int *qBuf = (int *)(buf + sizeof(int));

cout << "Buf Addr Int Addr" << endl;

cout << pBuf << " " << pInt << endl << qBuf << " " << qInt << endl;

cout << "1st Int 2nd Int" << endl;

cout << *pBuf << " " << *qBuf << endl;

int *rInt = new int(7); // heap allocation

cout << "Heap Addr 3rd Int" << endl;

cout << rInt << " " << *rInt << endl;

delete rInt; // delete integer from heap

// No delete for placement new

return 0;

}

Buf Addr Int Addr

001BFC50 001BFC50

001BFC54 001BFC54

1st Int 2nd Int

3 5

Heap Addr 3rd Int

003799B8 7

• Placement new operator takes a buffer address to place objects
• These are not dynamically allocated on heap –
may be allocated on stack
• Allocations by Placement new operator must not be deleted

Software Engineering 2022 Sourangshu Bhattacharya 8

Module 10

Sourangshu
Bhattacharya

Objectives &
Outline

Memory
Management
in C

malloc & free

Memory
Management
in C++

new & delete

Array

Placement new

Restrictions

Overloading
new & delete

Summary

Mixing malloc, operator new, etc

Allocation and De-Allocation must correctly match. Do not free
the space created by new using free(). And do not use
delete if memory is allocated through malloc(). These may
results in memory corruption

Allocator De-allocator
malloc() free()

operator new operator delete

operator new[] operator delete[]

operator new() No delete

Passing NULL pointer to delete operator is secure

Prefer to use only new and delete in a C++ program

The new operator allocates exact amount of memory from Heap

new returns the given pointer type – no need to typecast

new, new[] and delete, delete[] have separate semantics
Software Engineering 2022 Sourangshu Bhattacharya 9

Module 10

Sourangshu
Bhattacharya

Objectives &
Outline

Memory
Management
in C

malloc & free

Memory
Management
in C++

new & delete

Array

Placement new

Restrictions

Overloading
new & delete

Summary

Program 10.08: Overloading operator new

#include <iostream>

#include <stdlib.h>

using namespace std;

void* operator new(size_t n) { // Definition of new

cout << "Overloaded new" << endl;

void *ptr;

ptr = malloc(n); // Memory allocated to ptr

return ptr;

}

void operator delete(void *p) { // definition of delete

cout << "Overloaded delete" << endl;

free(p); // Allocated memory released

}

int main() {

int *p = new int; // calling overloaded operator new

*p = 30; // Assign value to the location

cout << "The value is :\t" << *p << endl;

delete p; // calling overloaded operator delete

return 0;

}

Overloaded new

The value is : 30

Overloaded delete

• operator new overloaded
• The first parameter of overloaded operator new must be size t

• The return type of overloaded operator new must be void *

• The first parameter of overloaded operator delete must be void *

• The return type of overloaded operator delete must be void

• More parameters may be used for overloading
• operator delete should not be overloaded (usually) with extra parameters

Software Engineering 2022 Sourangshu Bhattacharya 10

Module 10

Sourangshu
Bhattacharya

Objectives &
Outline

Memory
Management
in C

malloc & free

Memory
Management
in C++

new & delete

Array

Placement new

Restrictions

Overloading
new & delete

Summary

Program 10.09: Overloading operator new[]

#include <iostream>

#include <cstdlib>

using namespace std;

void* operator new [] (size_t os, char setv) { // Fill the allocated array with setv

void *t = operator new(os);

memset(t, setv, os);

return t;

}

void operator delete[] (void *ss) {

operator delete(ss);

}

int main() {

char *t = new(’#’)char[10]; // Allocate array of 10 elements and fill with ’#’

cout << "p = " << (int) (t) << endl;

for (int k = 0; k < 10; ++k)

cout << t[k];

delete [] t;

return 0;

}

p = 19421992

##########

• operator new[] overloaded with initialization
• The first parameter of overloaded operator new[] must be size t

• The return type of overloaded operator new[] must be void *

• Multiple parameters may be used for overloading
• operator delete [] should not be overloaded (usually) with
extra parameters

Software Engineering 2022 Sourangshu Bhattacharya 11

Module 10

Sourangshu
Bhattacharya

Objectives &
Outline

Memory
Management
in C

malloc & free

Memory
Management
in C++

new & delete

Array

Placement new

Restrictions

Overloading
new & delete

Summary

Module Summary

Introduced new and delete for dynamic memory
management in C++

Understood the difference between new, new[] and
delete, delete[]

Compared memory management in C with C++

Explored the overloading of new, new[] and delete,
delete[] operators

Software Engineering 2022 Sourangshu Bhattacharya 12

	Objectives & Outline
	Memory Management in C
	malloc & free

	Memory Management in C++
	new and delete operator
	Dynamic memory allocation for Array
	Placement new
	Restrictions

	Operator overloading
	Summary of module-10

